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Fig. 14. Proton F
p
2 structure function in the resonance region for several values of Q2, as indicated. Data from Jefferson Lab

Hall C [65,66] are compared with some recent parameterizations of the deep inelastic data at the same Q2 values (see text).

Comparison of resonance region data with PDF-based global fits allows the resonance–scaling com-

parison to be made at the same values of (x, Q2), making the experimental signature of duality less

ambiguous. Such a comparison is presented in Fig. 14 for F
p
2 data from Jefferson Lab experiment E94-

110 [65,66], with the data bin-centered to the values Q2 = 1.5, 2.5 and 3.5 GeV2 indicated. These F
p
2

data are from an experiment capable of performing longitudinal/transverse cross section separations, and

so are even more precise than those shown in Figs. 11–13.

The smooth curves in Fig. 14 are the perturbative QCD fits from the MRST [67] and CTEQ [68]

collaborations, evaluated at the same Q2 values as the data. The data are shown with target mass (TM)

corrections, which are calculated according to the prescription of Barbieri et al. [16]. The SLAC curve

is a fit to deep inelastic scattering data [69], which implicitly includes target mass effects inherent in

the actual data. The target mass corrected pQCD curves appear to describe, on average, the resonance

strength at each Q2 value. Moreover, this is true for all of the Q2 values shown, indicating that the

resonance averages must be following the same perturbative Q2 evolution [60] which governs the pQCD

parameterizations (MRST and CTEQ). This demonstrates even more emphatically the striking duality

between the nominally highly nonperturbative resonance region and the perturbative scaling behavior.

An alternate approach to quantifying the observation that the resonances average to the scaling curve

has been used recently by Alekhin [70]. Here the differences between the resonance structure func-

tion values and those of the scaling curve, !F
p
2 , are used to demonstrate duality, as shown in Fig. 15,
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Fig. 26. As in Fig. 25, but for the longitudinal structure function FL.

the integrated resonance region strength forQ2!1GeV2 is similar to the integrated perturbative strength
over the same range in x. This strongly suggests that, at least for the unpolarized structure functions,

duality is a fundamental property of nucleon structure.

4.2.2. Moments of F1 and FL
In this section we present moments of new, LT-separated, spin-averaged, structure function data.

Previously, F2 moments were constructed using assumed values for R. Since hardly any measurements
of R existed in the nucleon resonance region before the Jefferson Lab E94-110 experiment [65,66], one

may expect small changes to the low-Q2 moments of F2 constructed from the earlier data.
At lower values of Q2 (< 5GeV2), the region of the nucleon resonances covers larger intervals of x,

and consequently resonances provide increasingly dominant contributions to structure function moments.

Since bound state resonances are associated with nonperturbative effects in QCD, one expects deviations

fromperturbative behavior to be strongest in this regime.This is especially true in the longitudinal channel,

where long-range correlations between quarks are expected to play a greater role, as discussed in Section

4.2.1, above.

As can be seen in Figs. 27 and 28, nonperturbative effects (other than the elastic contribution) appear

to be small in the new Jefferson Lab data above Q2 = 0.7GeV2. Here, the n = 2 and 4 moments of the

F
p
2 (top), 2xF

p
1 (center), and F

p
L (bottom) structure functions are extracted from fits to the Jefferson Lab

Hall C [65,66] and SLAC [95,98] data. This moment analysis is still preliminary [99], and is ultimately

Christy et al. (2005)

duality in F  and F  structure functions
(from longitudinal-transverse separation)
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measurements at higher Q2 —data which are planned but
not yet available [24].

Figure 3 shows the same duality integral ratio as in
Fig. 2, but here obtained more locally, in restricted j
ranges around the three prominent resonance enhancement
regions observed in inclusive nucleon resonance electro-
production, i.e., around the masses of the D P33(1232)
(1.3 # W2 , 1.9 GeV2), the S11(1535) (1.9 # W2 ,
2.5 GeV2), and the F15(1680) (2.5 # W2 , 3.1 GeV2)
resonances, and in the higher W2 region above these
(3.1 # W2 # 3.9 GeV2). The uncertainties shown were
computed as in Fig. 2. The latter higher mass ratios,
which compare near deep inelastic data to deep inelastic
data are essentially one and similar to the results in Fig. 2.
It has been pointed out [25] that the D resonance form
factor decreases faster in Q2 than the leading order pertur-
bative QCD Q24 behavior which the scaling curve should
reflect. A similar observation may possibly be made from
Fig. 3 where the ratio (res!DIS) drops below unity in the
region 1 , Q2 , 3.5 "GeV!c#2. The S11 region, on the
other hand, appears systematically higher than the others.
Generally, however, the lower mass resonances appear to
average to the deep inelastic strength, manifesting duality
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FIG. 3. The ratios of integrated data strength in limited ranges
of j around the prominent resonance enhancement mass regions,
to the strength from the resonance fit (stars) and NMC (squares)
scaling curves integrated over the same j regions.

behavior even in these limited ranges of j at low Q2

where higher twist effects might be expected to be large.
By utilizing new inclusive data in the resonance region

at large x, it has been possible to revisit quark-hadron dual-
ity experimentally for the first time in nearly three decades.
These new data, combined with the extensive global mea-
surements of the F2 structure function from deep inelastic
scattering, allow for precision tests of duality in electron-
nucleon scattering. The original duality observations are
verified, and the QCD moment explanation indicates that
higher twist contributions to the n ! 2 moment of the F2
structure function are small or canceling, even in the low
Q2 regime of Q2 $ 0.5 "GeV!c#2. Duality is observed
to hold for local resonance enhancements individually, as
well as for the entire 1 # W2 # 4 GeV2 resonance region.
In all cases, duality appears to be a nontrivial dynamic
property of the nucleon structure function.

This work is supported in part by research grants from
the National Science Foundation. C. E. K. and R. E. wish
to thank A. Radyushkin for many useful discussions.
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Fig. 16. Ratios of the resonance to scaling integrals of the proton structure functions F
p
2 , F

p
L , 2xF

p
1 , and Rp integrated over x.

The integration limits are defined by the pion threshold at the highest x, and by W = 2GeV at the lowest x, for the Q2 values

of the resonance data. The scaling functions in the ratios are the SLAC parameterization [69] (squares) and the target mass

corrected MRST fit [67] (triangles) at the same (x, Q2) values.

other from a parameterization of SLAC deep inelastic data [69]. In most cases, the integrated perturbative

strength is equivalent to the resonance region strength to better than 5% aboveQ2= 1GeV2. This shows
unambiguously that duality is holding quite well on average in all of the unpolarized structure functions;

the total resonance strength over a range in x is equivalent to the perturbative, PDF-based prediction.

Of some concern is the seeming deviation from this observation in the MRST ratio at the highest

values of Q2 in Fig. 16, where the ratio rises above unity. This rise is not a violation of duality, but

rather is most likely due to an underestimation of large-x strength in the pQCD parameterizations. Higher

Q2 corresponds to large x here and, for comparison with resonance region data at the larger Q2 values,

accurate predictions at large x are crucial. There exists uncertainty in the PDFs at large x, largely due to

the ambiguity in the d/u quark distribution function ratio beyond x ∼ 0.5, which arises from the model
dependence of the nuclear corrections when extracting neutron structure information from deuterium data

(see Refs. [72–75]). Even if nominally deep inelastic data at higher W 2 and Q2, rather than resonance

region data, are compared to the available pQCD parameterizations, the scaling curves do not show

enough strength at large x (x!0.5) and fall uniformly below the data points.

Jefferson Lab (Hall C)

Moments
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Fig. 22. F2 structure function per nucleon as a function of ! for hydrogen, deuterium, and iron. The curves are the GRV
parameterization [81] atQ2 = 1GeV2, corrected for the nuclear EMC effect. Errors shown are statistical only.

Because nucleons in the deuteron have the smallest Fermi momentum of all nuclei, ! scaling is not
expected to work in deuterium as well as in heavier nuclei at low W 2 and Q2. However, ! scaling is
observed even in deuterium at extremely low values of W 2 and relatively low momentum transfers.

For Q2!3GeV2, the resonance structure is completely washed out, so that even the most prominent "
resonance is no longer visible.

A compilation of recent F2 structure function data above W 2 = 1.2GeV2 is shown in Fig. 22 for
hydrogen, deuterium, and iron as a function of !, for a variety of momentum transfers ranging from

Q2=0.5GeV2 at low ! toQ2=7GeV2 at the higher ! values.Also shown is the F2 scaling curve for the
nucleon (from the GRV parameterization [81]), corrected for the known nuclear medium modifications

to the structure function. For the proton, the resonance structure is clearly visible and F2 is seen to
oscillate around the scaling curve. For deuterium, and even more so for iron, the resonances become less

pronounced, being washed out by the Fermi motion of the nucleons inside the nucleus. The prominent

peak present in the deuterium data in Fig. 22 (center panel) corresponds to the " resonance. This peak
follows the scaling curve as for the proton, but the other resonance peaks are smeared so much as to be

Nuclear structure 
functions

for larger nuclei, 
Fermi motion 
does resonance
averaging 
automatically !
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Duality in QCD
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high-precision An
1 data of the Jefferson Lab E99-117 ex-

periment [19] at large x. Since the elastic contribution is
included separately, the maximum value of x is defined
for each experiment by the pion electroproduction thresh-
old. The resulting total moments Γn

1 from the world data
are plotted in Fig. 1 for 0.5 < Q2 ≤ 10 GeV2, where the
total uncertainty in each data set is the quadratic sum of
the statistical and systematic uncertainties. The Jeffer-
son Lab experiment E94-010 (filled circles) extends the
range of Q2 with precision data below Q2 = 1 GeV2.
In all cases the data include both the inelastic and elas-
tic contributions, with the latter taken from the fit in
Ref. [20].
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FIG. 1: Q2 dependence of Γn

1 from various experiments. The
error bars are a quadratic sum of statistical and systematic
uncertainties. The twist-2 contribution from Eq. (2) is given
by the band with ∆Σ = 0.35, and its width represents the
uncertainty in αs. The elastic contribution is indicated by
the long-dashed curve.

The twist-2 contribution µn
2 is determined by fitting

the neutron data in Fig. 1 assuming there are no higher
twists in the data beyond Q2 = 5 GeV2, from which we
obtain ∆Σ = 0.35±0.08, where the uncertainty is statis-
tical. Using this central value, the twist-2 contribution is
illustrated in Fig. 1 by the shaded band, with the extrema
representing the range of uncertainty associated with the
value of αs in the Wilson coefficients. The exact value of
∆Σ depends somewhat on the x → 0 behavior assumed
in the extrapolation beyond the measured region. How-
ever, since the higher-twist contributions are determined
from the relative variation in Γn

1 from high to low Q2, the
absolute normalization of the leading-twist contribution
does not play a major role in determining fn

2 .
The higher-twist contribution ∆Γn

1 , obtained by sub-
tracting the leading-twist curves in Fig. 1 from data on
the total moment Γn

1 , is shown in Fig. 2 as a function
of 1/Q2 for ∆Σ = 0.35. Here we have used an

2 =
−0.0031(20) for the target mass corrections, obtained
from a fit to the world neutron data [19] at Q2 = 5 GeV2,
and the value dn

2 = 0.0079(48) for the twist-3 matrix el-

ement obtained from SLAC experiment E155X [21]. At
this Q2 value an

2 and dn
2 are dominated by their leading-

twist contributions.
While the Q2 evolution of the (twist-2) an

2 is straight-
forward, the evolution of higher-twist structure func-
tions is in general rather more involved. For the twist-4
fn
2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn

1 data for Q2 > 0.5 GeV2, using
Eq. (3) with fn

2 and the 1/Q4 correction µn
6 as free pa-

rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be

fn
2 = 0.033± 0.005 , µn

6 = (−0.019± 0.002)M4 , (9)

normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find

fn
2 = 0.034± 0.043 , µn

6 = (−0.019± 0.017)M4 . (10)
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FIG. 2: Higher-twist correction ∆Γn

1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
is a 2-parameter (fn

2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.
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representing the range of uncertainty associated with the
value of αs in the Wilson coefficients. The exact value of
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ever, since the higher-twist contributions are determined
from the relative variation in Γn
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absolute normalization of the leading-twist contribution
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1 , obtained by sub-
tracting the leading-twist curves in Fig. 1 from data on
the total moment Γn

1 , is shown in Fig. 2 as a function
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2 =
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While the Q2 evolution of the (twist-2) an

2 is straight-
forward, the evolution of higher-twist structure func-
tions is in general rather more involved. For the twist-4
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2 matrix element the Q2 evolution was computed in

Refs. [6, 22] to leading logarithmic order. In this analy-
sis we assume the leading-twist values for an

2 and dn
2 at

Q2 = 5 GeV2 and use the results from Refs. [6, 22] to ac-
count for the logarithmic Q2 dependence of fn

2 . In prac-
tice, the inclusion of αs dependence of the 1/Q2 correc-
tions has very little influence on the values of the higher
twists that we extract.

The solid curve in Fig. 2 represents a 2-parameter min-
imum χ2 fit to the ∆Γn
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Eq. (3) with fn

2 and the 1/Q4 correction µn
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rameters. We neglect any possible Q2 dependence in µ6

itself, which should be a reasonable assumption within
the present uncertainties. The best fit values for the
twist-4 and 1/Q4 corrections, using only the statistical
uncertainty for each experiment, are found to be
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2 = 0.033± 0.005 , µn
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normalized at Q2 = 1 GeV2. Including the total system-
atic uncertainty for each experiment, we find
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1 versus 1/Q2. The world
data points include statistical (inner ticks) and total uncer-
tainties (outer ticks), except for those of HERMES and JLab
E94010, for which only statistical uncertainties are shown
with error bars, with systematic uncertainties indicated by
the dark bands at the bottom of the figure. The solid curve
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2 and µn

6 ) fit to the Q2 > 0.5 GeV2 data,
while the dashed curve is a 1-parameter (fn

2 only) fit to the
Q2 > 1 GeV2 data. The band around the solid curve repre-
sents the uncertainty of the fit due to statistical uncertainties,
and the light band at the bottom of the figure corresponds to
the total uncertainty.
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Fig. 2. Q2 dependence of the Nachtmann moment M1(Q
2). The

error bars are statistical, with the systematic errors indicated by

the hashed areas (see text). The leading twist (dashed), 1/Q2

(dot-dashed), 1/Q4 (dot-dot-dashed) and elastic (dotted) contribu-

tions are shown separately. The solid curve is the sum of leading and

higher twist terms.

dependence of the structure function when interpolat-

ing between data points, and is therefore well-suited

for a study of Q2 evolution of the moments. For the

low-x extrapolation, beyond the region where data ex-

ist, we use the Regge model-inspired parametrization

from Ref. [26]. To estimate the uncertainty associated

with the low-x extrapolation, we also consider other

parameterizations [27], and take the maximum differ-

ence between the respective low-x contributions as the

error.

The resulting Nachtmann moment M1(Q
2) is

shown in Fig. 2, where the error bars on the data

points are statistical only. The systematic errors, some

of which are correlated, are shown separately in the

hashed areas above the data, and represent uncertain-

ties from the low-x extrapolation (lower hashed area),

and the experimental systematic errors together with

those from A2, R and an estimated 5% uncertainty on

the elastic contribution (upper hashed area). The g2
contribution to M1 is obtained from A‖, A⊥, and F1,

as determined from the present analysis (see Ref. [21]

for details).

The fit to the total momentM1(Q
2) uses three para-

meters, ainv0 , f2 (or µ4) and µ6, with the nonsinglet ax-

ial charges (gA and a8) as inputs. For the leading twist

contribution we use a next-to-leading order approxi-

mation for the Wilson coefficients and the two-loop

expression for αs , which atQ
2 = 1 GeV2 corresponds

to αNLOs = 0.45± 0.05 in the MS scheme.

In fitting the parameters, we have considered both

multiparameter (simultaneous) fits and sequential fits,

in which the leading twist term ainv0 is first fitted to

the high-Q2 data, and then the higher twist terms

are extracted. While both methods should in princi-

ple yield the same results when the experimental errors

are small, in practice the multiparameter fit may not be

the most suitable choice when emphasizing the high-

precision low-Q2 data. The multiparameter fit is most

effective when the errors on the data are similar across

the entire Q2 range, and the number of points in the

region which determines the leading twist contribution

(Q2 ! 5 GeV2) is similar to that which constrains the

higher twists (Q2 " 5 GeV2).

Assuming the data at high Q2 are saturated by the

twist-2 term alone, the fit to the Q2 > 5 GeV2 data

determines the singlet axial charge to be

ainv0 = 0.145± 0.018(stat) ± 0.103(sys)

(6)± 0.041(low x) ± 0.006
0.010(αs),

where the first and second errors are statistical and

systematic, the third comes from the x → 0 extrap-

olation, and the last is due to the uncertainty in αs .

We have considered the sensitivity of the results to

the value of Q2 used to constrain the leading twist

term. We find that ainv0 converges to the above value

for Q2 ! 3–4 GeV2. Fitting the Q2 > 10 GeV2 data

would lead to practically the same values of ainv0 , but

with a slightly larger error bar.

Having determined the twist-2 term from the high-

Q2 data, we now extract the 1/Q2 and 1/Q4 coeffi-

cients from the 1 # Q2 # 5 GeV2 data, fixing ainv0 to

the above value, but allowing it to vary within its sta-

tistical errors. For the twist-4 coefficient we find

f2 = 0.039± 0.022(stat) ± 0.000
0.018(sys)

(7)± 0.030(low x) ± 0.007
0.011(αs),

normalized at a scale Q2 = 1 GeV2 (the Q2 evolution

of f2 is implemented using the one-loop anomalous

dimensions calculated in Ref. [28]). The systematic

uncertainty on f2 is determined by refitting the M1

data shifted up or down by the M1 systematic uncer-

tainty shown in Fig. 2 (upper hashed area). The low-x

extrapolation uncertainty is determined by fitting the

M1 values shifted by the maximum difference between

the x → 0 contributions calculated with the parame-

terizations from Refs. [26,27] (lower hashed area in
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higher twist small down to Q  ~ 2 GeV2 2



nonperturbative interactions between
quarks and gluons not dominant at these scales 

suggests strong cancellations between resonances, 
resulting in dominance of leading twist

Total higher twist small at Q2
∼ 1 − 2 GeV

2

OPE does not tell us why higher twists are small !

need dynamical models to understand how 
cancellations between coherent resonances 
produce incoherent scaling function
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Local duality in

dynamical quark models



Coherence vs. incoherence

Exclusive form factors
coherent scattering from quarks

dσ ∼

(∑
i

ei

)2

dσ ∼

∑

i

e
2

i

Inclusive structure functions

incoherent scattering from quarks

how can the square of a sum
become the sum of squares?



Pedagogical model

Two quarks bound in a harmonic oscillator potential
exactly solvable spectrum

Structure function given by sum of squares of 
transition form factors

F (ν,q2) ∼

∑

n

∣∣G0,n(q2)
∣∣2 δ(En − E0 − ν)

Charge operator                          excites
∝ (e1 + e2)

2

∝ (e1 − e2)
2

Σi ei exp(iq · ri)

odd  partial waves with strength 
even partial waves with strength



Pedagogical model

Resulting structure function

F (ν,q2) ∼

∑

n

{
(e1 + e2)

2 G2
0,2n

+ (e1 − e2)
2 G2

0,2n+1

}

If states degenerate, cross terms
cancel when averaged over nearby even and odd 
parity states 

(∼ e1e2)

Minimum condition for duality:

at least one complete set of even and odd 
parity resonances must be summed over

Close, Isgur,  Phys. Lett. B509 (2001) 81



Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

Simplified case:  magnetic coupling of      to quarkγ
∗

expect dominance over electric at large Q2

Quark model



Quark model

Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
"n
, !4#

and polarization asymmetries,

A1
N#

g1
N

F1
N , !5#

A1
"N#

g1
"N

F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2

SYMMETRY BREAKING AND QUARK-HADRON DUALITY . . . PHYSICAL REVIEW C 68, 035210 !2003#

035210-3

λ (ρ) = (anti) symmetric component of ground state wfn.

|N〉 = λ |ϕ ⊗ χ〉sym + ρ |ϕ ⊗ χ〉antisym



Quark model

Even and odd parity states generalize to 56   (L=0)
and 70   (L=1) multiplets of spin-flavor SU(6)

+
-

scaling occurs if contributions from 56   and 70  
have equal overall strengths

+ -

λ (ρ) = (anti) symmetric component of ground state wfn.

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#
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F1
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F1
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, !4#

and polarization asymmetries,

A1
N#
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N
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, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
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3
, A1

p#
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9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2
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Similarly for neutrinos ...



as in quark-parton model !

SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence

7

Summing over all resonances in 56   and 70   multiplets+ -

Ap

1
=

gp

1

F p

1

=
5

9
An

1 =
gn

1

Fn

1

= 0R
np

=
Fn

1

F
p

1

=
2

3

Quark model



cancellations within multiplets for g
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SU(6) limit λ = ρ
Table 2: Relative Photoproduction Strengths of 56, 0+ and 70, 1− Mul-

tiplets

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
gp
1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

L 1 0 1 0 1 3
F n

L 0 0 1 0 1 2

However, for F1(Q2 → 0) both electric and magnetic multipoles contribute
and interfere with phases determined by the JP and the spin-Lz correla-
tions in the various 56 and 70 states. This causes dramatic Q2 dependence
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Quark model

as in parton model !

Similarly for neutrinos ...

of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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SU!6# quark-parton model results (19):
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TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
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10(70!) Total
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TABLE II. As in Table I, but for neutrino-induced N→N* transitions.
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8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2
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SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
F p

1 9 8 9 0 1 27
F n

1 4 8 1 4 1 18
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1 9 −4 9 0 1 15

gn
1 4 −4 1 −2 1 0

In contrast to the proton case, this table predicts that for neutron targets,
the S11(1530) region ([70, 1−]28) will fall below the scaling curve. The third
resonance region, containing [70, 1−]48 as well as [56, 2+]28 and [56, 2+]410,
is expected to be locally enhanced over the scaling curve for both proton and
neutron targets. Note that to order q2 the [56, 0+] and [70, 1−] multiplets are
sufficient to realise duality. Formally the analyis can be extended to higher
q2 by including correspondingly higher multiplets; however, the credibility
of the non-relativistic harmonic oscillator may become questionable. These
predictions will be interesting tests of our analysis.

Inclusion of both magnetic and electric interactions shows that the duality
is non-trivial. Inasmuch as the magnetic terms dominate at large Q2 in the
quark model, duality can be realised for the dominantly transverse scattering
of the deep inelastic region. For the longitudinal structure function, FL,
duality is again realised, with the breakdown into 56 and 70 as in Table 3:

Table 3: Relative Longitudinal Production Strengths, as in Table 2

SU(6) : [56, 0+]28 [56, 0+]410 [70, 1−]28 [70, 1−]48 [70, 1−]210 total
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SU(6) may be      valid at x ~ 1/3 ≈

which combinations of resonances reproduce
behavior of structure functions at large x?
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3
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!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,
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p 5/9 1 1 1 1 1
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R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1

F. E. CLOSE AND W. MELNITCHOUK PHYSICAL REVIEW C 68, 035210 #2003$

035210-4

R!!
1

2
, A1

!p!"
1

3
, A1

!n!
2

3
"SU#6 $% , #8$

for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.
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p 5/9 1 1 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:

!p↑'!
1

!2
!u↑#ud $0'#

1

!18
!u↑#ud $1'"

1

3
!u↓#ud $1'

"
1

3
!d↑#uu $1'"

!2
3

!d↓#uu $1', #9$

where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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sidering the wave function of a proton in the SU#6$ limit,
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
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states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
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!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
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In this section we examine the conditions under which
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duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
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states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.
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Rnp 2/3 10/19 1/2 6/19 3/7 1/4
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p 5/9 1 1 1 1 1
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and
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410 representations of 56#, respectively, while
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states S31(1620) and D33(1700) belong to the
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tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2
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ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
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trast to the SU#6$ expectations, especially for the neutron,
where A1
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the quark level, explicit SU#6$ breaking mechanisms produce
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hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since
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2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a
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x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
polarized in the #z direction "19%:
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4
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p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal
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matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since
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At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a
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ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
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We shall look therefore for different Q2 dependences in
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and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.
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world of SU#6$ symmetry where the members of a 56# or
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els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1
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hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2
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p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
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!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1
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In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-
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for neutrino scattering, which correspond to u!2d and &u
!"4&d . The quark level results are easily deduced by con-
sidering the wave function of a proton in the SU#6$ limit,
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and
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28 and
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410 representations of 56#, respectively, while
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3
2

states S31(1620) and D33(1700) belong to the
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tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
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In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-
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for neutrino scattering, which correspond to u!2d and &u
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where the subscript 0 or 1 denotes the total spin of the two-

quark component. The neutron wave function is obtained

from Eq. #9$ by interchanging u↔d . In this limit, apart from

charge and flavor quantum numbers, the u and d quarks in

the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-

pendix. The various structure function ratios in the SU#6$
quark model are listed in the first column of Table III.
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ity can become locally satisfied. In turn this kinematics
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shall look at specific examples of resonances having these
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from Eq. #9$ by interchanging u↔d . In this limit, apart from
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the proton are identical, and, in particular, have the same x

distributions. The relations between the structure functions

and leading order parton distributions are given in the Ap-
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quark model are listed in the first column of Table III.

One should point out that these results arise in an ideal

world of SU#6$ symmetry where the members of a 56# or

70" are each degenerate, with common Q2 dependent form

factors. Reality is not like that. In the quark model the usual

assignments of the excited states have the nucleon and

P33(1232) & isobar belonging to the quark spin-12
28 and

quark spin-32
410 representations of 56#, respectively, while

for the odd parity states the 28 representation contains the

states S11(1535) and D13(1520), the 48 contains the

S11(1650), D13(1700), and D15(1675), while the isospin-
3
2

states S31(1620) and D33(1700) belong to the
210 represen-

tation. One purpose of this paper will be to investigate the

systematics of such SU#6$ breaking which split energy lev-
els, give different Q2 dependence to form factors, distort the

u and d flavors and spin distributions, and affect the x→1

behaviors via duality.

III. DUALITY AND SU„6… BREAKING
While the SU#6$ predictions for the structure functions

hold approximately at x(1/3, significant deviations are ob-
served at larger x. Empirically, the d quark distribution is

observed to be much softer than the u for x$0.5 "19–22%,
leading to F2

n/F2
p%2/3 at large x. Also, on the basis of helic-

ity conservation "23,24%, one expects that the proton and neu-
tron polarization asymmetries, for both electromagnetic and

neutrino scattering, A1
N ,A1

!N→1 as x→1, in dramatic con-

trast to the SU#6$ expectations, especially for the neutron,
where A1

n!0 and A1
!n!"1/3.

In this section we examine the conditions under which

combinations of resonances can reproduce, via quark-hadron

duality, the behavior of structure functions in the large-x re-

gion where SU#6$ breaking effects are most prominent. At
the quark level, explicit SU#6$ breaking mechanisms produce
different weightings of components of the initial state wave

function, Eq. #9$, which in turn induces different x depen-
dences for the spin and flavor distributions. On the other

hand, at the hadronic level SU#6$ breaking in the N→N*
matrix elements leads to suppression of transitions to specific

resonances in the final state, while starting from a symmetric

SU#6$ initial state wave function. Thus if we admit breaking
of the SU#6$ symmetry, then for duality to be manifest the
pattern of symmetry breaking in the initial state has to match

that in the final state.

Note that for a fixed W!MR of a given resonance R, the

resonance peak moves to larger x with increasing Q2, since

at the resonance peak one has x!xR)Q2/(MR
2"M 2#Q2).

At low Q2, the prominent resonances are spread out in x and

a necessary condition for duality involves integrating over a

range of x corresponding to W&2 GeV. At large Q2 for fixed

x one has large W and hence a dense population of overlap-

ping coherent resonance states. In such a circumstance dual-

ity can become locally satisfied. In turn this kinematics

means that if a given resonance at x(1/3 appears at rela-
tively low Q2, the x(1 behavior of the resonance contribu-
tion to the structure function will be determined by the N

→R transition form factor at large Q2.

We shall look therefore for different Q2 dependences in

the transition form factors to different spin-flavor multiplets,

and study their implications for x→1 in the sum. Then we

shall look at specific examples of resonances having these

particular correlations and identify experimental tests of the

hypothesis.

A. Suppression of ! states

The most immediate breaking of the SU#6$ duality could
be achieved by varying the overall strengths of the coeffi-

TABLE III. Structure function ratios from quark-hadron duality in SU#6$, and in various SU#6$ breaking
scenarios, as described in the text. Note that the ‘‘No 410’’ and ‘‘No 2,410’’ scenarios are not consistent with

quark-hadron duality.

Model SU#6$ No 410 No 210, 410 No S3/2 No *3/2 No +,

Rnp 2/3 10/19 1/2 6/19 3/7 1/4

A1
p 5/9 1 1 1 1 1

A1
n 0 2/5 1/3 1 1 1

R! 1/2 3/46 0 1/14 1/5 0

A1
!p –1/3 1 1 –1/3

A1
!n 2/3 20/23 13/15 1 1 1
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nuclear corrections in the deuteron at large x, however,

which is more sensitive to the high momentum components

of the deuteron wave function, the results beyond x!0.6 are
somewhat model dependent "22#, as indicated in Fig. 4. The
difference between the two sets of points is representative of

the theoretical uncertainty in the extraction. In particular, the

lower set of points corresponds to an analysis which ac-

counts for Fermi motion in the deuteron "28#, while the up-
per set of points includes Fermi motion and binding effects

"22# $see also Ref. "29#%. A fit to the weighted average of the
extrema of the two sets of data points, constrained to ap-

proach Rnp!6/19 as x→1, is indicated by the dashed curve

"a polynomial of degree two is used to fit the x dependence
of &s(x) in Eq. $10%#. The fit is clearly compatible with the
current data on Rnp, but could be further constrained by

more accurate data at large x. Several proposals for obtaining

the neutron to proton ratio at large x with reduced nuclear

uncertainties are discussed in Refs. "30,31#.
Using the mixing angle &s(x) fitted to R

np, the resulting

polarization asymmetries for the proton and neutron are

shown in Figs. 5 and 6, respectively, compared with a com-

pilation of large-x data from SLAC "32#, SMC "33#, and

HERMES "34#. The predicted x dependence of both A1
p and

A1
n in the S3/2 suppression scenario is relatively strong; the

SU$6% symmetric results which describe the data at x!1/3
rapidly give way to the broken SU$6% predictions as x→1.

Within the current experimental errors, the S3/2 suppression

model is consistent with the x dependence of both the Rnp

ratio and the polarization asymmetries.

Using the neutrino ratios R', A1
'p , and A1

'n , the indi-

vidual quark flavor and spin distribution ratios can be deter-

mined $or equivalently, extracted from the electromagnetic

ratios as discussed in the Appendix%. The unpolarized d/u
ratio in the S1/2 dominance scenario is shown in Fig. 7

$dashed%, and the spin-flavor ratios (u/u and (d/d are illus-
trated in Figs. 8 and 9, respectively.

C. Helicity 3Õ2 suppression

The above discussion has demonstrated how duality be-

tween the parton model and a sum over low-lying resonances

can arise on the basis of classifying transitions to excited

states according to the total spin of the quarks, with either

equal weighting of S1/2 and S3/2 components in the case of

SU$6% symmetry, or suppression of the latter at large x. Ac-
cording to duality, structure functions at large x are deter-

mined by the behavior of transition form factors at high Q2;
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In the other extreme limit as !s→"/2, the polarization asym-
metries approach !1, while Rnp→3/2. Neither of these sce-

narios are supported phenomenologically, as we shall discuss

below, and the physical region appears to correspond to 0

"!s"9"/32.
In analogy with Eqs. #10$–#12$, the ratio of the unpolar-

ized proton and neutron structure functions for neutrino scat-

tering is

R%#
1$7sin2!s
14!10sin2!s

, #14$

and the neutrino polarization asymmetries:

A1
%p#

1!5sin2!s
1$7sin2!s

, #15$

A1
%p#

7!8sin2!s
7!5sin2!s

. #16$

The dependence on the angle !s for the neutrino observables
is shown in Fig. 3 #dashed curves$. The trends of the ratios
are similar to those of the electromagnetic ratios in Fig. 2

#with the neutron and proton reversed$. Once again the

SU#6$ symmetric limit, Eq. #8$, is reproduced when !s
#"/4. The phenomenologically favored scenario in which
S3/2 contributions are suppressed in the limit x→1 gives rise

to

R%#
1

14
, A1

%p#1, A1
%n#1 &!s#0' . #17$

From the relations between the structure functions and par-

ton distributions in the Appendix one can verify that the

results for d/u extracted from Rnp are consistent with those

from R% &Eqs. #A5$ and #A12$', and those for (q/q extracted
from A1

N consistent with those from A1
%N &Eqs. #A6$–#A7$

and Eqs. #A13$–#A14$'.
The dependence of the structure function ratios in Eqs.

#10$–#12$ and Eqs. #14$–#16$ on one parameter !s means

that the SU#6$ breaking scenario with S3/2 suppression can be
tested by simultaneously fitting the n/p ratios and the polar-

ization asymmetries. In general, data on unpolarized struc-

ture functions are more abundant, especially at high x, than

on spin-dependent structure functions, so it is more practical

to fit the x dependence of !s(x) to the existing data on un-
polarized n/p ratios, which can then be used to predict the

polarization asymmetries.

Unfortunately, data on F1 neutrino structure functions at

x%0.4–0.5 are essentially nonexistent, and there have been
no experiments at all to measure spin-dependent structure

functions in neutrino scattering. The most precise data on the

electromagnetic neutron to proton ratio Rnp come from

SLAC experiments &20,21'. The absence of free neutron tar-
gets has meant that neutron structure information has had to

be inferred from inclusive deuteron and proton structure

functions. Because of uncertainties in the treatment of
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about the size of the nuclear EMC effects in the deuteron &22'.
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nuclear corrections in the deuteron at large x, however,

which is more sensitive to the high momentum components

of the deuteron wave function, the results beyond x!0.6 are
somewhat model dependent "22#, as indicated in Fig. 4. The
difference between the two sets of points is representative of

the theoretical uncertainty in the extraction. In particular, the

lower set of points corresponds to an analysis which ac-

counts for Fermi motion in the deuteron "28#, while the up-
per set of points includes Fermi motion and binding effects

"22# $see also Ref. "29#%. A fit to the weighted average of the
extrema of the two sets of data points, constrained to ap-

proach Rnp!6/19 as x→1, is indicated by the dashed curve

"a polynomial of degree two is used to fit the x dependence
of &s(x) in Eq. $10%#. The fit is clearly compatible with the
current data on Rnp, but could be further constrained by

more accurate data at large x. Several proposals for obtaining

the neutron to proton ratio at large x with reduced nuclear

uncertainties are discussed in Refs. "30,31#.
Using the mixing angle &s(x) fitted to R

np, the resulting

polarization asymmetries for the proton and neutron are

shown in Figs. 5 and 6, respectively, compared with a com-

pilation of large-x data from SLAC "32#, SMC "33#, and

HERMES "34#. The predicted x dependence of both A1
p and

A1
n in the S3/2 suppression scenario is relatively strong; the

SU$6% symmetric results which describe the data at x!1/3
rapidly give way to the broken SU$6% predictions as x→1.

Within the current experimental errors, the S3/2 suppression

model is consistent with the x dependence of both the Rnp

ratio and the polarization asymmetries.

Using the neutrino ratios R', A1
'p , and A1

'n , the indi-

vidual quark flavor and spin distribution ratios can be deter-

mined $or equivalently, extracted from the electromagnetic

ratios as discussed in the Appendix%. The unpolarized d/u
ratio in the S1/2 dominance scenario is shown in Fig. 7

$dashed%, and the spin-flavor ratios (u/u and (d/d are illus-
trated in Figs. 8 and 9, respectively.

C. Helicity 3Õ2 suppression

The above discussion has demonstrated how duality be-

tween the parton model and a sum over low-lying resonances

can arise on the basis of classifying transitions to excited

states according to the total spin of the quarks, with either

equal weighting of S1/2 and S3/2 components in the case of

SU$6% symmetry, or suppression of the latter at large x. Ac-
cording to duality, structure functions at large x are deter-

mined by the behavior of transition form factors at high Q2;
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of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
"n
, !4#

and polarization asymmetries,

A1
N#

g1
N

F1
N , !5#

A1
"N#

g1
"N

F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
2

3
, A1

p#
5

9
, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2

g1
p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
"p 0 24+2 0 0 3+2 27+2

F1
"n (9,"+)2/4 8+2 (9,!+)2/4 4+2 +2 (81,2"27+2)/2

g1
"p 0 !12+2 0 0 3+2 !9+2

g1
"n (9,"+)2/4 !4+2 (9,!+)2/4 !2+2 +2 (81,2!9+2)/2
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of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,

Rnp#
F1
n

F1
p , !3#

R"#
F1

"p

F1
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, !4#

and polarization asymmetries,

A1
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g1
N

F1
N , !5#

A1
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g1
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F1
"N
, !6#

for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):

Rnp#
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3
, A1
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, A1

n#0 (SU!6 #) , !7#

for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .

SU!6# representation 2
8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
10(70!) Total

F1
p 9,2 8+2 9,2 0 +2 18,2"9+2

F1
n (3,"+)2/4 8+2 (3,!+)2/4 4+2 +2 (9,2"27+2)/2
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p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2

TABLE II. As in Table I, but for neutrino-induced N→N* transitions.
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of squares of form factors, FN→R(q!
2), describing the transi-

tions from the nucleon to excited states R,

F1!" ,q! 2#$%
R

!FN→R!q! 2#!2&!ER!EN!"#, !2#

where EN and ER are the energies of the ground state and

excited state, respectively. In terms of photoabsorption cross

sections !or W boson absorption cross sections for neutrino

scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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n

F1
p , !3#

R"#
F1
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, !4#
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N , !5#

A1
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"N
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, !6#
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Rnp#
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3
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5

9
, A1
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scattering#, the F1 structure function is proportional to the
sum '1/2"'3/2 , with '1/2(3/2) the cross section for total
boson-nucleon helicity 1/2 !3/2#. The spin-dependent g1
structure function, on the other hand, corresponds to the dif-

ference '1/2!'3/2 .
Resonance excitation and deep inelastic scattering in gen-

eral involve both electric and magnetic multipoles. Excita-

tion in a given partial wave at Q2#0 involves a complicated
mix of these. However, as Q2 grows one expects the mag-

netic multipole to dominate over the electric, even by Q2

$0.5 GeV2 in specific models (7,11). Furthermore, recent
phenomenological analyses of electromagnetic excitations of

negative parity resonances suggest that for the prominent

D13 resonance the ratio of helicity-1/2 to helicity-3/2 ampli-

tudes is consistent with zero beyond Q2*2 GeV2 (17),
which corresponds to magnetic dominance. This dominance

of magnetic, or spin flip, interactions at large Q2 for N*
excitation matches the dominance of such spin flip in deep

inelastic scattering. For instance, the polarization asymmetry

A1#g1 /F1 is positive at large Q
2, whereas A1$0 if electric

interactions were prominent (18). Thus in the present analy-
sis we assume that the interaction with the quark is domi-

nated by the magnetic coupling. In this approximation the F1
and F2 structure functions are simply related by the Callan-

Gross relation, F2#2xF1 , independent of the specific mod-
els we use for the structure functions themselves.

The relative photoproduction strengths of the transitions

from the ground state to the 56" and 70! are summarized in

Table I for the F1 and g1 structure functions of the proton

and neutron. For generality, we separate the contributions

from the symmetric and antisymmetric components of the

ground state nucleon wave function, with strengths + and , ,
respectively. The SU!6# limit corresponds to +#, . The co-
efficients in Table I assume equal weights for the 56" and

70
! multiplets (7). Similarly, neutrino-induced transitions to

excited states can be evaluated (8), and the relative strengths
are displayed in Table II for the proton and neutron. Because

of charge conservation, only transitions to decuplet !isospin-
3
2 ) states from the proton are allowed. !Note that the overall
normalizations of the electromagnetic and neutrino matrix

elements in Tables I and II are arbitrary.#
Summing over the full set of states in the 56" and 70!

multiplets leads to definite predictions for neutron and proton

structure function ratios,
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for N#p or n. In particular, for +#, one finds the classic
SU!6# quark-parton model results (19):
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for electromagnetic scattering, and

TABLE I. Relative strengths of electromagnetic N→N* transitions in the SU!6# quark model. The
coefficients + and , denote the relative strengths of the symmetric and antisymmetric contributions of the
SU!6# ground state wave function. The SU!6# limit corresponds to +#, .
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p 9,2 !4+2 9,2 0 +2 18,2!3+2

g1
n (3,"+)2/4 !4+2 (3,!+)2/4 !2+2 +2 (9,2!9+2)/2
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8(56") 4

10(56") 2
8(70!) 4

8(70!) 2
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suppression model! identical production rates
in 56   and 70   channels+ _

for both e and     scattering!

important test for future     experiments!



4.
Phenomenological

models



Rein, Sehgal, Ann. Phys.133, 79 (1981)

based on relativistic HO model of Feynman, Kislinger
& Ravndal (1971)

Rein, Sehgal (1981): early model of     production 
in    scattering

!
!

extended by Bodek, Yang to include DIS region
Bodek, Yang,  hep-ph/0411202

!Matsui, Sato, Lee (2005): CC and NC     production
in     region! Matsui, Sato, Lee,

Phys. Rev. C72, 025204 (2005)

Parameterize           vertex function with 
phenomenological form factors Lalakulich, Paschos,

Phys. Rev. D71, 074003 (2005)
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an additional decrease in the region of small Q2 where the
Pauli suppression is also significant, but the data are still
slightly lower than the theoretical curve.

In the ANL experiment the data are with large bins of Q2

and the maximum of d!=dQ2 is at a larger value of Q2.
The formalism described so far determines the cross sec-
tion including the absolute normalization. For MA !
1:05 GeV and the modified dipole in Eq. (2.12) we obtain
the curve in Fig. 2(a), which is above the data. The inte-
grated cross section in this case at high energies ap-
proaches 0:7 " 10#38cm2, which is consistent with the
experimental data. The discrepancy in Q2 # dependence
can not be resolved by the overall normalization of the
curve and requires a decrease of MA ! 0:84 GeV in order
to obtain the curve in Fig. 2(b). The two curves are without
(dotted) and with (solid curve) the muon mass. The inte-
grated cross section is also decreased approaching at high
energies a constant value of 0:55 " 10#38cm2, which is also
consistent with the data.

An earlier theoretical analysis [10] accounts for the
ANL data by using similar couplings and muon mass
effects. They include nuclear corrections by using deute-
rium wave functions and compare the differential cross
section to the ANL data. Another approach [19] describes
electron and neutrino scattering on various nuclei in terms
of a scaling law abstracted from data and the authors
present several distributions. A direct comparison with
our results is not available and perhaps difficult because
of the different methods.

Another way to reach an agreement with the data is to
replace the dependence (2.12) with a steeper dependence,
for example

CA
5 $Q2% ! CA

5 $0%
$1&Q2=M2

A%2
1

1& 2Q2=M2
A
;

with MA ! 1:05 GeV or
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FIG. 2. The cross section d!=dQ2, calculated for the ANL
neutrino energy distribution. The full lines are for m" !
0:105 GeV, the dashed lines are for the approximation m" ! 0.
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FIG. 1. The cross section d!=dQ2, calculated for the BNL
neutrino energy spectrum and compared with the experiment for
the running width (2.13) (a) and (2.14) (b)1(b). The full lines are
for the case m" ! 0:105 GeV, the dashed lines are for the
approximation m" ! 0.
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Pauli suppression is also significant, but the data are still
slightly lower than the theoretical curve.

In the ANL experiment the data are with large bins of Q2

and the maximum of d!=dQ2 is at a larger value of Q2.
The formalism described so far determines the cross sec-
tion including the absolute normalization. For MA !
1:05 GeV and the modified dipole in Eq. (2.12) we obtain
the curve in Fig. 2(a), which is above the data. The inte-
grated cross section in this case at high energies ap-
proaches 0:7 " 10#38cm2, which is consistent with the
experimental data. The discrepancy in Q2 # dependence
can not be resolved by the overall normalization of the
curve and requires a decrease of MA ! 0:84 GeV in order
to obtain the curve in Fig. 2(b). The two curves are without
(dotted) and with (solid curve) the muon mass. The inte-
grated cross section is also decreased approaching at high
energies a constant value of 0:55 " 10#38cm2, which is also
consistent with the data.

An earlier theoretical analysis [10] accounts for the
ANL data by using similar couplings and muon mass
effects. They include nuclear corrections by using deute-
rium wave functions and compare the differential cross
section to the ANL data. Another approach [19] describes
electron and neutrino scattering on various nuclei in terms
of a scaling law abstracted from data and the authors
present several distributions. A direct comparison with
our results is not available and perhaps difficult because
of the different methods.

Another way to reach an agreement with the data is to
replace the dependence (2.12) with a steeper dependence,
for example
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of the flattening of the cross section at small Q2, as
expected.

We conclude, that different experiments, performed with
the help of bubble chambers in the 80’s, show at low Q2 a

slightly lower cross section than theoretically predicted.
The experiments described so far are not detailed enough
to allow separation of the form factors and a unique deter-
mination of their Q2 dependence.

Two new experiments K2K and MiniBooNE will be
delivering results. They are both at low neutrino energies
where the muon mass effects should be important. With the
neutrino spectra from [25,26] we predict the
Q2-distributions shown in Figs. 7 and 8, using the axial
form factor in Eq.(2.12). These experiments use medium or
heavy nuclei as targets and nuclear corrections must be
applied, which were left out in our curves (only Pauli
blocking is included).

IV. SPECIAL PROPERTIES

It is evident from our presentation that the cross section
in the ! resonance region has several important features
still to be investigated. One of them deals with the structure
of the form factors, especially the axial form factors. We
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ment, W < 1:4 (solid line) and W < 1:6 (dashed line).
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of the flattening of the cross section at small Q2, as
expected.

We conclude, that different experiments, performed with
the help of bubble chambers in the 80’s, show at low Q2 a

slightly lower cross section than theoretically predicted.
The experiments described so far are not detailed enough
to allow separation of the form factors and a unique deter-
mination of their Q2 dependence.

Two new experiments K2K and MiniBooNE will be
delivering results. They are both at low neutrino energies
where the muon mass effects should be important. With the
neutrino spectra from [25,26] we predict the
Q2-distributions shown in Figs. 7 and 8, using the axial
form factor in Eq.(2.12). These experiments use medium or
heavy nuclei as targets and nuclear corrections must be
applied, which were left out in our curves (only Pauli
blocking is included).
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Lalakulich, Paschos,
Phys. Rev. D71 (2005) 074003

Phenomenological model

Neutrino form factors fitted to neutrino cross section data from 
BNL,  ANL,  BEBC,  FNAL  (more to come with MINER  A)!



Lalakulich,WM, Paschos (2005)

Construct structure function from phenomenological
N     N* transition form factors

Resonance widths

II. RESONANCE PRODUCTION

In this article we discuss experiments in which the
reaction

!! ~k"p! ~p" ! "#! ~k0"!$$! ~p0" ! "#p#$ (2.1)

is studied. We adopt standard kinematics with the defini-
tions

q % k# k0; Q2 % #q2; W2 % p02

and compute the cross section d$
dQ2dW . The mass of the

resonance is not restricted to a specific value but allowed
to vary within an interval proportional to the width.
Consequently we let W vary and write the cross section
with formulas analogous to deep inelastic scattering. The
cross section is now written as

d$
d"dE0 %

G2

16#2 cos
2%C

E0

E
L"!W "! (2.2)

withmN the mass of the nucleon in the target, MR the mass
of the resonance and the leptonic tensor

L"! % Tr&&"!1# &5"k6 &!k6 0'
% 4!k"k0! $ k!k0" # g"!k ( k0 # i""!'(k'k0("

(2.3)

The hadronic tensor is defined as

W "! % 1

2mN

XhpjJ"!0"j!ih!jJ!!0"jpi)!W2 #M2
R"

% #W 1g"! $W 2

m2
N
p"p! # i""!$*p$q*

W 3

2m2
N

$W 4

m2
N
q"q! $W 5

m2
N
!p"q! $ q"p!"

$ i
W 6

m2
N
!p"q! # q"p!" (2.4)

where the sum implies a sum over the ! polarization states
and an averaging over the spins of the target. The integra-
tion over phase space of the !was carried out and gives the
one-dimentional )# function. Sometimes it is convenient
to use other variables for resonance production
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It is known that resonance production dominates neutrino
reactions in the few GeV energy region. The formalism we
present in this section is general and holds for various
resonances. Later on, when we relate the structure func-
tions to the form factors, we specialize to distinct final
states.

The hadronic matrix element differs from resonance to
resonance and contains vector and axial form factors. A
convenient parametrization for the !$$ resonance is the
following
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In the square of the matrix element also appears the
Rarita-Schwinger projection operator
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With these preliminaries the hadronic tensor takes the
form
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(2.9)

with ! $d""$ % &0!d$""$&0 and then parametrized accord-
ing to (2.4). This way we define the relative normalization
between the structure functions and the form factors. The
factor 3 comes from the isospin coefficient for ! and the
1=2 from the averaging over the initial spins of the target.
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Neutrino structure functions

Important to understand systematics of 
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Integrated structure functions
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5.
DIS at low Q2



as Q   decreases,  pQCD description
(twist expansion) breaks down

2

near real photon point expand in Q   rather than 1/Q2 2

intriguing indications of duality even at Q   = 02

Donnachie, Landshoff (1992)

high-energy Regge fit

!"p = X(2M#)$P−1+Y (2M#)$R−1



low Q   behavior constrained by (electromagnetic)
gauge invariance

2

Donnachie, Landshoff (1992)

F2(x,Q2)→ Q2

FL(x,Q2)→ Q4
} as Q2→ 0

model for      at low Q2
F
!
2

VMD PCAC

F!
2

= Q2

(
f"

1+Q2/m2"

)2

#"N + f 2$

(
1

1+Q2/m2A1

)2

#$N

since axial current only partially conserved

F!
2
(x,Q2)→ f 2" #

"N as Q2→ 0



gauge invariance or dynamics?

Donnachie, Landshoff (1992)

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

F2 valence-like
2at low Q   ?

cf. xF3



gauge invariance or dynamics?

Donnachie, Landshoff (1992)

F2 ∼ Q0.5

Niculescu et al., Phys. Rev. Lett. 85 (2000) 1182

need lower Q   before behavior driven by gauge inv.2



Target mass corrections

kinematical 1/Q   corrections (twist-2)
associated with finite value of M/Q

2

important at large x2M2/Q2
Christy et al. (2005)

no TMCTMC



Target mass corrections

TMCs for weak structure functions calculated
by Kretzer & Reno (2004)

difficulty with (well-known) threshold problem

FTMC
i (x→ 1,Q2) "= 0

where pi(x, Q2) denote the distribution of partons of the type i (PDF), the sum is taken
over the different types quarks and antiquarks. The coefficients functions Ci

a depend on the
process and the type of the structure function a but are independent of the target. These
functions are computable as power series in αS. The parton distributions are independent
of the process but do depend on the target.

The PDFs have non-perturbative origin and cannot be calculated in perturbative QCD.
However, the Q2 dependence of the PDFs can be handled using QCD perturbation theory,
and is governed by the well-known DGLAP evolution equations [33]:

Q2 ∂pi(x, Q2)

∂Q2 =
∑

j=q,q̄,g

∫ 1

x

dz

z
Pij(z, αS(Q2))pj(x/z, Q2), (22)

where Pij are the splitting functions. The splitting functions describe the interaction between
different partons at a large scale Q2 and, similar to the coefficient functions, are computable
as power series in αS.1

The one-loop (NLO) coefficient and splitting functions have been computed since long
time [34]. The two-loop (NNLO) coefficient functions [35] and the corresponding splitting
functions [36] are now also available. For all the calculations described in this paper we use
both the coefficient function and the PDFs to NNLO approximation in order to calculate
LT structure functions.

2. Target Mass Corrections

It must be commented that the twist expansion is derived in the massless target limit.
If a finite mass for the nucleon target is considered, new terms arise in Eq.(20) that mix
operators of different spin, leading to additional power terms of kinematical origin – the
so-called target mass corrections (TMC). In the approximation that x2M2/Q2 is small, the
TMC series can be absorbed in the leading twist term [37]. Therefore, Eq.(20) remains valid
with the LT terms replaced by

FTMC
T (x, Q2) =

x2

ξ2γ
F LT

T (ξ, Q2) +
2x3M2

Q2γ2

∫ 1

ξ

dz

z2
F LT

2 (z, Q2), (23a)

FTMC
2 (x, Q2) =

x2

ξ2γ3
F LT

2 (ξ, Q2) +
6x3M2

Q2γ4

∫ 1

ξ

dz

z2
F LT

2 (z, Q2), (23b)

xFTMC
3 (x, Q2) =

x2

ξ2γ2
ξF LT

3 (ξ, Q2) +
2x3M2

Q2γ3

∫ 1

ξ

dz

z2
zF LT

3 (z, Q2), (23c)

where γ = (1 + 4x2M2/Q2)1/2 and ξ = 2x/(1 + γ) is the Nachtmann variable [38].
However, it must be remarked that the derivation of [37] was given in the zeroth order

in αS, assuming that the target quarks are on-shell and neglecting the transverse degrees of
freedom. Both, higher order αS corrections and quark off-shell effects modify Eqs.(23). Fur-
thermore, Eqs.(23) suffer the so called threshold problem. Indeed, it follows from Eqs.(23)

1 We note also that both Eq.(21) and Eq.(22) are presented for the factorization and the renormalization

scales set to Q2.
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since !(x= 1) < 1 FLT
i (!,Q2) > 0

where pi(x, Q2) denote the distribution of partons of the type i (PDF), the sum is taken
over the different types quarks and antiquarks. The coefficients functions Ci

a depend on the
process and the type of the structure function a but are independent of the target. These
functions are computable as power series in αS. The parton distributions are independent
of the process but do depend on the target.

The PDFs have non-perturbative origin and cannot be calculated in perturbative QCD.
However, the Q2 dependence of the PDFs can be handled using QCD perturbation theory,
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time [34]. The two-loop (NNLO) coefficient functions [35] and the corresponding splitting
functions [36] are now also available. For all the calculations described in this paper we use
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LT structure functions.

2. Target Mass Corrections

It must be commented that the twist expansion is derived in the massless target limit.
If a finite mass for the nucleon target is considered, new terms arise in Eq.(20) that mix
operators of different spin, leading to additional power terms of kinematical origin – the
so-called target mass corrections (TMC). In the approximation that x2M2/Q2 is small, the
TMC series can be absorbed in the leading twist term [37]. Therefore, Eq.(20) remains valid
with the LT terms replaced by

FTMC
T (x, Q2) =

x2

ξ2γ
F LT

T (ξ, Q2) +
2x3M2

Q2γ2

∫ 1

ξ

dz

z2
F LT

2 (z, Q2), (23a)

FTMC
2 (x, Q2) =

x2

ξ2γ3
F LT

2 (ξ, Q2) +
6x3M2

Q2γ4

∫ 1

ξ

dz

z2
F LT

2 (z, Q2), (23b)

xFTMC
3 (x, Q2) =

x2

ξ2γ2
ξF LT

3 (ξ, Q2) +
2x3M2

Q2γ3

∫ 1

ξ

dz

z2
zF LT

3 (z, Q2), (23c)
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+O(1/Q4)



Target mass corrections

one solution (Kulagin/Petti) - expand in 

Kulagin, Petti
hep-ph/0412425

1/Q  2

that the target mass corrected inelastic structure functions FTMC
2 remain finite as x → 1

even if the LT terms vanish in this limit. Clearly, the region x close to 1 is beyond the appli-
cability of Eqs.(23). However, in the applications to nuclear structure functions at large x it
is important to meet the threshold condition. One possible way to deal with this problem is
to expand Eqs.(23) in power series in Q−2 and keep a finite number of terms. In particular,
keeping the LT and the 1/Q2 term we have

FTMC
T (x, Q2) = F LT

T (x, Q2) +

x3M2

Q2

(
2

∫ 1

x

dz

z2
F LT

2 (z, Q2) − ∂

∂x
F LT

T (x, Q2)

)
, (24a)

FTMC
2 (x, Q2) =

(
1 − 4x2M2

Q2

)
F LT

2 (x, Q2) +

x3M2

Q2

(
6

∫ 1

x

dz

z2
F LT

2 (z, Q2) − ∂

∂x
F LT

2 (x, Q2)

)
, (24b)

xFTMC
3 (x, Q2) =

(
1 − 2x2M2

Q2

)
xF LT

3 (x, Q2) +

x3M2

Q2

(
2

∫ 1

x

dz

z2
zF LT

3 (z, Q2) − ∂

∂x
xF LT

3 (x, Q2)

)
. (24c)

In this approximation the structure functions have a correct threshould behavior and vanish
in the limit of x → 1, provided that the LT terms and their derivatives vanish in this limit.

The target mass corrections should also be applied to the HT terms in the higher order
terms in the twist expansion (20). For this reason we do not consider 1/Q4 terms in the
TMC formula, which are small in the considered kinematical range. We also note, that the
target mass corrections for an off-shell target, i.e. when p2 #= M2, should be treated as part
of the nuclear effects and will be discussed in Sect. IVA6.

B. Structure function phenomenology

The twist expansion and PDFs as universal, process-independent characteristics of the
target are at the basis of extensive QCD phenomenology of high-energy processes. In phe-
nomenological studies, the PDFs are extracted from QCD global fits. A number of such
analyses are available [39, 40, 41]. In our studies of nuclear data described in Sect. VF
to VID we use the results by Alekhin [39] 2 who provides the set of the nucleon PDFs
obtained with coefficient and splitting functions calculated to the NNLO approximation.
Furthetmore, the HT terms and the PDF uncertainties have also been evaluated in [39].

It should be also remarked that the twist expansion and perturbative QCD apparently
breaks down at low Q2. Furthermore, the conservation of electromagnetic current requires
the structure function F2 to vanish as Q2 for Q2 → 0. The data seem to indicate the
presence of a transition region between perturbative and non-perturbative regimes at Q2

about 1 GeV2. In our studies of nuclear effects in the structure functions some data points

2 In our analysis we use PDFs obtained from new fits optimized in the low Q2 region and including additional

data with respect to [39]. This extraction of PDFs also takes into account the nuclear corrections to D

data described in the present paper (Section VG). Results from the new fits will be reported elsewhere.
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has correct threshold behavior

alternatively, work with                   dependent PDFs
Steffens, WM 2005

!0 = !(x= 1)



Phenomenological higher twists

usually parameterized as

Virchaux, Milsztajn,
Phys. Lett. B274 (1992) 221

F2(x,Q2) = FLT
2

(x,Q2)
(
1+

C(x)
Q2

)

Volume 274, n u m b e r  2 PHYSICS LE T TER S B 9 January  1992 

combine them in quadrature  with the statistical er- 

rors, and to treat  the resulting point- to-point  errors 

in the fits as i f  they were totally uncorrelated.  This 

approximation is of  minor  importance given the small 

size and the numerous different uncorrelated sources 

of  these errors. 

The QCD fits described above have been per- 

formed simultaneously on the H2 and D2 data both 

with and without the inclusion of  target mass correc- 

tions (TMC) .  These corrections are computed  nu- 

merically from the measured F 2 ' s  themselves and do 

not involve any addi t ional  free parameter .  The main  

results f the  fit with TMC are given in table 1. 

The Z 2 of  the fit is good; it is smaller than one per 

degree of  freedom, because we have included the mi- 

nor systematic errors in the point- to-point  uncorre- 

lated errors (i t  is close to one when these minor  er- 

rors are not taken into account) .  It is better with TMC 

included (around 10 units o f x  2) and, although the 

higher-twist coefficients C, that one obtains from the 

fits with or without TMC are significantly different, 

the values of  c~ and of  the gluon dis t r ibut ion param- 

eters A and t /are  almost the same in both cases. The 

errors on the fi t ted parameters  are domina ted  by sys- 

tematic  uncertainties.  When the data  are dis tor ted by 

the effect of  a one-s tandard-devia t ion  error from any 

given systematic source, the Z 2 variat ion is in average 

of  order  9. So, we have chosen to quote errors that 

correspond to AX 2 = 9. 

The fit including TMC is shown in fig. 1 together 

with the H2 and D2 data. The overall descr ipt ion of  

the data by the fit is good, apart  from local minor  

problems (for example for H2, x =  0.07 and 0.275 for 

SLAC, x = 0 . 0 7  and 0.55 for BCDMS) .  The differ- 

ence between the solid and dashed curves (see the 

caption of  fig. 1 ) is directly l inked to the magni tude 

of  the higher-twist terms: this figure therefore shows 

that the influence of  higher-twists in the Q2-evolu- 

t ion .of  F2 is small or negligible above ~ 4 GeV 2 at 

low x ( x < 0 . 5 0 )  and above ~ l0 GeV 2 at higher x. 

The fitted relative normal isat ions  of  the data  sets 

are smaller than 1.0%, well within the absolute nor- 

malisation uncertainties of  3% and 2% on the BCDMS 

and SLAC data. The amount  of  BCDMS main sys- 

tematic  error (2 parameter )  that corresponds to the 

min imum X 2 is about  1.3 t imes the published errors. 

The fitted values of  2 for H2 and D2 are very similar,  

as is to be expected for systematic uncertainties which 

do not depend on the target material .  

3. Higher twists 

We show in fig. 2 and give in table 2 the values of  

the coefficients C,, for the fit with TMC. The x-de- 

pendences of  these higher-twist terms are similar  in 

H2 and D2 data. For  x < 0 . 4 0  they are small, with a 

mean value of  order  - 0 . 0 5  GeV 2. For  x >  0.40, the 

higher-twist terms increase with x, as expected in 
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Fig. 2. The  higher-twist coefficients C, as a function of  x. Full 

( open )  circles are for H2 (D2) data. 

Table 2 

Higher-twist  coefficients C, for Hydrogen  and deuter ium.  

x C (H2 )  (GeV 2) C (D2 )  ( O e V  2) 

0.070 -0 .100_+0 .  I 13 -0 .118_+0 .115  

0.100 - 0.077 _+ 0.098 - 0.088 _+ 0.100 

0.140 - 0.052 + 0.075 - 0.053 + 0.079 

0.180 - 0.043 _+ 0.049 - 0.038 + 0.052 

0.225 - 0.046 _+ 0.026 - 0.008 + 0.028 

0.275 - 0.048 + 0.023 - 0.021 _+ 0.023 

0.350 - 0.041 + 0.026 + 0.022 + 0.026 

0.450 + 0.090 + 0.050 + 0.125 _+ 0.051 

0.550 + 0.304 _+ 0.095 + 0.410 + 0.095 

0.650 +0.792_+0.190 +0.938_+0.190 

0.750 + 1.250_+ 0.420 + 1.320_+0.400 

224 

SLAC, BCDMS
data (+TMC)
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pQCD at Q2 ! 200 GeV2 shown for comparison demon-
strates the large effect of pQCD corrections above x"
0:2. In Fig. 2, we show the low W2 data extracted here,
along with large W2 data from [24,25]. Note that the data
in the resonance region smoothly blend to the deep in-
elastic—another manifestation of BG duality. The curves
correspond to our calculations including pQCD# TMC
at NLO (dashes), and pQCD# TMC with resummation
(full). The dots in each curve represent regions where
TMC are uncertain. The effect we find is qualitatively
similar to that found in [9,10], in that over the range
0:45 $ x $ 0:85, higher order perturbative contributions,
in this case large x resummation, improve the agreement
with the data. Substantial discrepancies remain, which we
interpret in terms of dynamical HT corrections. We pa-
rametrize H%x;Q2& as

H%x;Q2& ! FpQCD#TMC
2 %x;Q2&CHT%x&: (3)

Equation (3) is motivated by the lack of knowledge of the
anomalous dimensions of the twist-4 operators, a reason-
able assumption within the precision of the data (see also
[26]). Our fixed W2 approach enables us to extract CHT
from the resonance region and from the DIS region,
separately.

In Fig. 3(a) we show the coefficient CHT, Eq. (3), ex-
tracted from the following: (i) DIS data with W2 '
4 GeV2, (ii) the resonance region, W2 < 4 GeV2, as
well as (iii) averaged over the entire range of W2. The
figure also shows the range of extractions previous to the
current one [11,27]. We observe in all three cases, values
for CHT smaller than the ones in [11,27], because of the
effect of large x resummation. We have checked that our
results without resummation are consistent with a pre-
vious extraction using moments of the structure function
[12]. Most importantly, while the large W2 data track a
curve that is consistent with the 1=W2 behavior expected
from most models [28], the low W2 data yield a much
smaller value for CHT, and they show a bend over of the
slope vs x, already predictable from a similar behavior of
the slopes at low W2 in Fig. 2. This surprising effect is not
a consequence of the interplay of higher order corrections
and the HT terms, but just of the extension of our detailed
pQCD analysis to the large x, low W2 kinematical region.
In order to ascertain whether the discrepancy between the
low W2 and large W2 values of CHT are due to O%1=Q4&
terms in the twist expansion, Eq. (1), which could become
more important at low W2, we have extracted for each
resonance the quantity !H%x;Q2&, defined as

Fexp
2

FpQCD#TMC
2

! 1# CHT%x&
Q2 # !H%x;Q2&; (4)

where CHT%x& coincides with the value fitted at large W2.
From Fig. 3(b) one sees that !H%x;Q2& is negative for all
lower W2 ( $ 3:4 GeV2) bins, as expected if a cancella-
tion among higher order inverse powers were to occur,
consistent with the requirement of parton-hadron duality.
However, we uncover a nontrivial Q2 dependence of this
term: one can see a sharp change between the behavior of
the higher mass resonances and that of the N ( ! tran-
sition region which shows a distinctively steeper fall with

Q2 (GeV2)

F
2p (

x,
Q

2 )

FIG. 2 (color online). Comparison of pQCD# TMC calcula-
tions at NLO (dashed lines) and with resummation (full lines),
with current large x data. The solid dots are in the resonance
region, 1:3 $ W2 $ 3:4 GeV2; the open triangles correspond to
W2 $ 1:3 GeV2. The dotted lines represent the regions where
TMC contributions are uncertain.
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FIG. 3 (color online). (a) Coefficient CHT, Eq. (3), extracted
from DIS data with W2 ' 4 GeV2 (solid dots), from the reso-
nance region, W2 < 4 GeV2 (stars) and averaged over the entire
range of W2 (open dots). The shaded area summarizes extrac-
tions previous to the current one. A dotted line at zero is added
to guide the eye; (b) !H, Eq. (4), extracted at fixed values of
W2 as described in the text, and plotted vs Q2. The figure
further elucidates a breakdown of the twist expansion at low
W2, already visible in (a).
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pQCD at Q2 ! 200 GeV2 shown for comparison demon-
strates the large effect of pQCD corrections above x"
0:2. In Fig. 2, we show the low W2 data extracted here,
along with large W2 data from [24,25]. Note that the data
in the resonance region smoothly blend to the deep in-
elastic—another manifestation of BG duality. The curves
correspond to our calculations including pQCD# TMC
at NLO (dashes), and pQCD# TMC with resummation
(full). The dots in each curve represent regions where
TMC are uncertain. The effect we find is qualitatively
similar to that found in [9,10], in that over the range
0:45 $ x $ 0:85, higher order perturbative contributions,
in this case large x resummation, improve the agreement
with the data. Substantial discrepancies remain, which we
interpret in terms of dynamical HT corrections. We pa-
rametrize H%x;Q2& as

H%x;Q2& ! FpQCD#TMC
2 %x;Q2&CHT%x&: (3)

Equation (3) is motivated by the lack of knowledge of the
anomalous dimensions of the twist-4 operators, a reason-
able assumption within the precision of the data (see also
[26]). Our fixed W2 approach enables us to extract CHT
from the resonance region and from the DIS region,
separately.

In Fig. 3(a) we show the coefficient CHT, Eq. (3), ex-
tracted from the following: (i) DIS data with W2 '
4 GeV2, (ii) the resonance region, W2 < 4 GeV2, as
well as (iii) averaged over the entire range of W2. The
figure also shows the range of extractions previous to the
current one [11,27]. We observe in all three cases, values
for CHT smaller than the ones in [11,27], because of the
effect of large x resummation. We have checked that our
results without resummation are consistent with a pre-
vious extraction using moments of the structure function
[12]. Most importantly, while the large W2 data track a
curve that is consistent with the 1=W2 behavior expected
from most models [28], the low W2 data yield a much
smaller value for CHT, and they show a bend over of the
slope vs x, already predictable from a similar behavior of
the slopes at low W2 in Fig. 2. This surprising effect is not
a consequence of the interplay of higher order corrections
and the HT terms, but just of the extension of our detailed
pQCD analysis to the large x, low W2 kinematical region.
In order to ascertain whether the discrepancy between the
low W2 and large W2 values of CHT are due to O%1=Q4&
terms in the twist expansion, Eq. (1), which could become
more important at low W2, we have extracted for each
resonance the quantity !H%x;Q2&, defined as

Fexp
2

FpQCD#TMC
2

! 1# CHT%x&
Q2 # !H%x;Q2&; (4)

where CHT%x& coincides with the value fitted at large W2.
From Fig. 3(b) one sees that !H%x;Q2& is negative for all
lower W2 ( $ 3:4 GeV2) bins, as expected if a cancella-
tion among higher order inverse powers were to occur,
consistent with the requirement of parton-hadron duality.
However, we uncover a nontrivial Q2 dependence of this
term: one can see a sharp change between the behavior of
the higher mass resonances and that of the N ( ! tran-
sition region which shows a distinctively steeper fall with
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FIG. 2 (color online). Comparison of pQCD# TMC calcula-
tions at NLO (dashed lines) and with resummation (full lines),
with current large x data. The solid dots are in the resonance
region, 1:3 $ W2 $ 3:4 GeV2; the open triangles correspond to
W2 $ 1:3 GeV2. The dotted lines represent the regions where
TMC contributions are uncertain.
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FIG. 3 (color online). (a) Coefficient CHT, Eq. (3), extracted
from DIS data with W2 ' 4 GeV2 (solid dots), from the reso-
nance region, W2 < 4 GeV2 (stars) and averaged over the entire
range of W2 (open dots). The shaded area summarizes extrac-
tions previous to the current one. A dotted line at zero is added
to guide the eye; (b) !H, Eq. (4), extracted at fixed values of
W2 as described in the text, and plotted vs Q2. The figure
further elucidates a breakdown of the twist expansion at low
W2, already visible in (a).
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Phenomenological higher twists

Description of the e.m. structure

functions up to Q = 0.

• The leading-twist terms with the NNLO QCD evolution up to

Q2 = 1 GeV2 (dominate structure functions for

Q2 ! 10 GeV2).

• Phenomenological higher-twist terms are parameterized as

additive corrections H(t)(x)/Qt−2. No Q−dependence of H(t)

is assumed. The t = 4 terms are important for Q2 " 10 GeV2

and the t = 6 terms – at Q2 " 3 GeV2.

• The QCD structure functions are interpolated between

Q2 = 1 GeV2 and Q2 = 0 using cubic spline at fixed x and the

constraints due to current conservation F2 ∼ Q2 and FL ∼ Q4

as Q2
→ 0.

extrapolation to low Q
(Alekhin, Kulagin, Petti 2005)

2

(      talk of R. Petti)



Phenomenological higher twists

Comparison with JLAB data beyond resonance region

(W = 1.9 ÷ 2 GeV)
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extrapolation to low Q
(Alekhin, Kulagin, Petti 2005)
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extrapolation to low Q
(Alekhin, Kulagin, Petti 2005)

2

Phenomenological higher twists

Impact of the twist-6 terms
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The twist-6 terms are important basically for Q2 ! 2GeV2

extrapolation to low Q
(Alekhin, Kulagin, Petti 2005)

2

R! !→ 0 as Q2→ 0NB:

large twist 6!
convergence?



Summary
Remarkable confirmation of quark-hadron duality in 
structure functions  

higher twists “small” down to low Q2
2(~ 1 GeV  )

provides quantitative handle on resonance-DIS transition

Quark models provide clues to origin of resonance 
cancellations  

Intriguing low-Q  behavior2

study systematics of local duality in     vs.  e scattering!

detailed phenomenological study underway

phenomenological extraction of higher twists

constraints for e.m.  but different for Q2→ 0 !

TMCs not completely understood for large x2M2/Q2
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